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Ab initio restricted Hartree-Fock method within the 

framework of large unit cell formalism is used to simulate 
relatively large silicon nanocrystals between 216 and 1000 
atoms that include Bravais and primitive cell multiples. The 
investigated properties include oxidized surface and core 
properties. Results revealed that electronic properties converge 
to some limit as the size of the nanocrystal increases. Increasing 
the size of the core of a nanocrystal resulted in an increase of 
energy gap, valance band width, and cohesive energy. The 
lattice constant of the core and oxidized surface parts show a 
decreasing trend as the nanocrystal increases in size that 
converges to 5.28 Ǻ. Surface and core convergence to the same 
lattice constant reflects good adherence of oxide layer at the 
surface. The core density of states shows a highly degenerate 
states that split at the oxygenated (001)-(1×1) surface due to 
symmetry breaking. The nanocrystal surface shows smaller gap, 
higher valence and conduction bands when compared to the core 
part due to oxygen surface atoms and reduced structural 
symmetry. Nanocrystal geometry proved to have strong 
influence on all electronic properties including the energy gap.  
 

 
 

I. Introduction 
 Silicon has many industrial uses and is considered one of the most important 
semiconductors [1]. It is the principal component of most semiconductor devices, most 
importantly integrated circuits. Silicon is widely used in semiconductors because it 
remains a semiconductor at higher temperatures than the semiconductor germanium and 
because its native oxide forms a better semiconductor/dielectric interface than any other 
material. The applications of silicon are in the electronic current conduction control 
(transistors), IC, detectors, solar cells …etc. Nanocrystalline silicon (nc-Si) has small 
grains of crystalline silicon within the amorphous phase (a-Si). One of the most important 
advantages of nanocrystalline silicon, is that it has increased stability over (a-Si). 
 Silicon has been studied extensively because it is widely used in electronic 
products [1-6]. On the other hand, the investigation of silicon nanocrystals is still an 
active field for investigation [3-6]. Silicon nanocrystals electronic structure of small 
hydrogenated or oxidized nanocrystals typically less than 500 atoms is recently 
performed using ab intio methods in the last years [3-6]. The present work addresses 
larger nanocrystals that have the size range of 216-1000 silicon atoms. The present upper 



limit size has not been investigated before using ab initio methods that requires long 
execution computer times and higher memory which is the case of the present work.  

Large unit cell method (LUC) coupled with ab initio Hartree-Fock electronic 
structure calculations are used in the present work. LUC method was formulated and used 
before for several kinds of bulk materials including diamond structured materials [6-9]. 
Semiempirical LUC calculations were performed previously for silicon nanocrystals [10] 
with smaller number of atoms.  The sizes covered in this work include cubic and 
parallelepiped nanocrystals that have lengths from 1.6 to 2.7 nm (216 to 1000 atoms). 
 

II. Theory 
 Ab initio self-consistent Hartree-Fock is used to obtain silicon nanocrystal 
molecular orbitals. Correlation corrections are neglected in the present calculations 
relying on Koopmans theorem [11]. This theorem states that comparisons of Hartree-
Fock closed shell results (which is the case in the present work) with experimental values 
suggest that in many cases the energetic corrections due to relaxation effects nearly 
cancel the corrections due to electron correlation 

In the present work, we divided calculations into two parts; core and surface part 
which is the traditional method used in microscopic size solid state calculations. 
Normally surface effects do not penetrate more than four layers of the crystal surface 
[12]. On the other hand, short range sp3 bonds in diamond structured elements do not 
require more than fourth neighbor’s interaction range to conduct electronic structure 
calculations successfully [8-10]. The upper two identical conditions will be applied in the 
present calculations. Previous silicon nanocrystals surface calculations [3, 5, 14] showed 
that double bonding (Si=O) of oxygenated surfaces is preferred on single bridge bonding 
(Si-O-Si). Many reasons might support this bonding such as surface curvature and larger 
lattice constants and bond lengths of nanocrystals. As a consequence of the above 
mentioned reasons, the oxygen atoms are found in the vicinity of one silicon atom and far 
enough from other silicon surface atoms that promote double oxygen bonding. 
 Two kinds of core LUCs are investigated, namely cubic and parallelepiped cells. 
The cubic cells are multiples of diamond structure Bravais unit cells, while the 
parallelepiped cells are multiples of primitive diamond structure unit cells [12]. Cubic 
core cells include 8, 64, 216 atoms. Parallelepiped cells include 16, 54, and 128 atoms.  
 

III. Calculations and results 
We shall perform the core part calculations using 3D large unit cell method 

(LUC). The 2D calculations for the oxygenated (001)-(1×1) surface is added to obtain a 
complete electronic structure view. The periodic boundary condition (PBC) method 
available in GUSSIAN 03 program [13] is used to perform the present tasks. 

In Fig. 1 total energy of 216 Si atoms nanocrystal core as a function of lattice 
constant is plotted. This curve and similar curves for other LUCs are used to obtain 
equilibrium lattice constants for these cells. Fig. 2 shows the equilibrium lattice constants 
obtained from the previous curves plotted against number of core atoms. Energy gap, 
valence band width and cohesive energy are plotted against the number of core atoms in 
Figs. (3-5) respectively.  

Three periodic slab stoichiometries where investigated to examine oxygenated (001)-
(1×1) surface namely Si16O4, Si64O16, and Si144O36. These stoichiometries  have surface areas 



a2, 4a2, and 9a2 respectively (a is the lattice constant). Fig. 6 shows the surface energy gap 
of the oxygenated (001)-(1×1) surface as a function of surface area of Si nanocrystal 
facet. This figure if followed by a comparison between core and surface density of states 
in Fig. 7. A batman shape curve of ionic charges in oxygenated (001)-(1×1) surface of 
periodic Si16O4 stoichiometry is shown in Fig. 8. 
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Fig. 1 Total energy of 216 Si atom nanocrystal core as a function of lattice constant. 
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Fig. 2 Lattice constant as a function of number of core atoms for Si nanocrystal.  
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Fig. 3 Energy gap of Si nanocrystal core as a function of number of atoms. 
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Fig. 4 Valance band width of Si nanocrystals core as a function of number of atoms. 
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Fig. 5 Cohesive energy for Si nanocrystal core as a function of number of atoms. 
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Fig. 6 Energy gap of Si nanocrystal oxygenated (001)-(1×1) face as a function of surface 
area of nanocrystal facet. 
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Fig. 7 Degeneracy of states of 8  atoms LUC as a function of levels energy (a), and (b) 
surface density of states of oxygenated (001)-(1x1) slab with a2 surface area. 
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Fig. 8 Ionic charges of oxygenated (001)-(1x1) surface slab calculations as a function of 
layer depth.  
 
 

IV. Discussion and conclusions 
Because of symmetry the core part has a unique single structure. This is the 

opposite case of surface multiple structures in which orientation, passivating atoms and 
other situations in which surface structure changes accordingly. Fig. 1 shows the 
variation of lattice constant with the number of core atoms. The variation of lattice 
constant is all what we need to assign the equilibrium geometry for the core part. The 
group of equilibrium constants for each of the investigated core sizes is plot against the 
number of atoms in Fig. 2. This figure shows that core lattice constant converge to some 
value as the nanocrystal grow up in size. This value is 5.28 Ǻ which is in a good 
agreement with the experimental value 5.43 Ǻ [1]. Surprisingly, the oxygenated (001)-
(1×1) surface slab calculations of the nanocrystal converges to approximately the same 
lattice constant value of the core (5.28 Ǻ). This shows that negligable stresses are 
encountered at the interface between surface and core parts which eventually reflects 
good adherence of the oxide layer.  

Energy gap, valence band width and cohesive energy of the core part that are 
plotted against the number of core atoms in Figures (3-5) respectively, show a converging 
behavior as the number of core atoms increases. This convergence is associated with 
fluctuations depending on the geometry of the nanocrystal core. At the convergence 
plateau Bravais cubic lattices seems to have higher energy gaps, valence band width, and 
cohesive energy (absolute value). This is a clear indication of geometry effects on 
electronic structure of nanocrystals. Energy gap is inversely proportional to the surface 
area of core atoms. Parallelepiped cells have less gap values than cubic ones. This 



discrimination between the electronic properties is also applicable to cohesive and 
valence band energies. These differences diminish as the nanocrystal grows up in size. 

Figure 6 shows the energy gap of oxygenated (001)-(1x1) silicon surface. From 
comparison of this figure with Fig. 3, we can note that energy gap at the surface is much 
less than that at core. As a consequence, the energy gap is controlled by the surface of 
nanocrystals. The descending energy gap shape of Fig. 6 leads to the result that silicon 
nanocrystals at this size obey quantum confinement implications. Experimentally 
Measured energy gap of silicon nanocrystals with a mean size of 4 nm embedded in a 
SiO2 matrix is 1.7 eV [15]. Although the size and matrix is different than the present 
calculations, the present surface gap result (1.1 eV) shows good agreement with 
experiment. Hydrogenated silicon nanocrystals [16, 17] show higher band gaps than 
oxygenated silicon nanocrystals. Surface modification by different atoms is discussed in 
reference [18]. The oxygen double bonding to the surface seems to be also favorable in 
silicon nanocrystals interface and small nanocrystals [19, 20]. 

Mesoscopic thermal conductance fluctuations of silicon nanowires are measured 
in reference [21]. The present fluctuations seem to be originating from different 
geometrical origin, although fluctuations in conductance should also occur in the present 
case due to fluctuations in the energy gap [1]. The present results are related to size and 
geometry which is far from the size of reference [21] (200 × 100 nm2 cross-section). 

Fig. 7 shows a comparison between surface and bulk density of states. Zero 
energy is assigned to the highest occupied molecular orbital (HOMO). In this figure we 
can notice that degeneracy of states is reduced in surface case due to splitting of these 
states. As a consequence of this splitting, the band gap is decreased and valence and 
conduction bands are increased. 

Fig. 8 shows the surface ionic charges of oxygenated (001)-(1×1) surface slab as a 
function of layer depth. The first and last atoms in the figure are for oxygen atoms which 
have negative charges due to their high affinity. Silicon atoms that are adjacent to oxygen 
atoms have positive charges. The second silicon neighbors to oxygen atoms have 
negative charges while the third neighbors have positive charges. This damping 
oscillatory charges ends at the fourth neighbors with practically zero charge. This curve is 
a good proof for the previously mentioned postulate of the adequacy of using four layers 
to represent the surface.  

Empirical or semiempirical methods that neglect large amount of the exact ab 
initio theory also exist and applied to silicon nanocrystals [10, 22]. These methods fit 
their empirical parameters to the available experimental data. These methods can 
simulate thousands of atoms at reasonable times. However, these models can be 
considered as a first approximation for the determination of the anticipated accurate 
structures using ab initio methods [13]. 

Summarizing the upper mentioned conclusions: the core part has a converging 
fluctuating energy gap, valance band width and cohesive energy. These fluctuations are 
related to the geometry of the nanocrystal. The energy gap is controlled by the surface 
part of the nanocrystal with the surface having damping oscillatory successive negative 
and positive layer charges. The surface part has lower symmetry than the core part with 
smaller energy gap and wider valence and conduction bands. Surface and core parts have 
approximately the same lattice constant that reflects the good adherence of oxide layer at 
the surface. 
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