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Ab initio restricted Hartree-Fock method within the
framework of large unit cell formalism is used tonslate
relatively large silicon nanocrystals between 21&l @000
atoms that include Bravais and primitive cell nplés. The
investigated properties include oxidized surfaced acore
properties. Results revealed that electronic ptaggerconverge
to some limit as the size of the nanocrystal ineesalncreasing
the size of the core of a nanocrystal resultedniringrease of
energy gap, valance band width, and cohesive enerbg
lattice constant of the core and oxidized surfaadspshow a
decreasing trend as the nanocrystal increases ze #iat
converges to 5.24. Surface and core convergence to the same
lattice constant reflects good adherence of oxaerl at the
surface. The core density of states shows a higbbyenerate
states that split at the oxygenated (001)-(1x1jaser due to
symmetry breaking. The nanocrystal surface showalsngap,
higher valence and conduction bands when comparteetcore
part due to oxygen surface atoms and reduced wustalct
symmetry. Nanocrystal geometry proved to have gtron
influence on all electronic properties including #nergy gap.

[. Introduction

Silicon has many industrial uses and is considemeel of the most important
semiconductors [1]. It is the principal componehihmst semiconductor devices, most
importantly integrated circuits. Silicon is widelysed in semiconductors because it
remains a semiconductor at higher temperaturesttresemiconductor germanium and
because its native oxide forms a better semicoondiditlectric interface than any other
material. The applications of silicon are in theatlonic current conduction control
(transistors), IC, detectors, solar cells ...etc. d¢aystalline silicon (nc-Si) has small
grains of crystalline silicon within the amorphquizase (a-Si). One of the most important
advantages of nanocrystalline silicon, is thati Increased stability over (a-Si).

Silicon has been studied extensively because ividely used in electronic
products [1-6]. On the other hand, the investigatid silicon nanocrystals is still an
active field for investigation [3-6]. Silicon namystals electronic structure of small
hydrogenated or oxidized nanocrystals typicallysldban 500 atoms is recently
performed using ab intio methods in the last y§ar6]. The present work addresses
larger nanocrystals that have the size range ofl®D® silicon atoms. The present upper



limit size has not been investigated before usingrnatio methods that requires long
execution computer times and higher memory whichascase of the present work.
Large unit cell method (LUC) coupled with ab initidartree-Fock electronic
structure calculations are used in the present wdJkC method was formulated and used
before for several kinds of bulk materials incluglidiamond structured materials [6-9].
Semiempirical LUC calculations were performed poesly for silicon nanocrystals [10]
with smaller number of atoms. The sizes coveredhis work include cubic and
parallelepiped nanocrystals that have lengths ftdto 2.7 nm (216 to 1000 atoms).

I1. Theory

Ab initio self-consistent Hartree-Fock is used dbtain silicon nanocrystal
molecular orbitals. Correlation corrections are leegd in the present calculations
relying on Koopmans theorem [11]. This theoremestahat comparisons of Hartree-
Fock closed shell results (which is the case inptiesent work) with experimental values
suggest that in many cases the energetic corractioie to relaxation effects nearly
cancel the corrections due to electron correlation

In the present work, we divided calculations intm tparts; core and surface part
which is the traditional method used in microscogize solid state calculations.
Normally surface effects do not penetrate more tloam layers of the crystal surface
[12]. On the other hand, short rangé spnds in diamond structured elements do not
require more than fourth neighbor’s interactiongarto conduct electronic structure
calculations successfully [8-10]. The upper twaniitzal conditions will be applied in the
present calculations. Previous silicon nanocrystatéace calculations [3, 5, 14] showed
that double bonding (Si=0) of oxygenated surfasgseferred on single bridge bonding
(Si-O-Si). Many reasons might support this bondngh as surface curvature and larger
lattice constants and bond lengths of nanocryst&$s.a consequence of the above
mentioned reasons, the oxygen atoms are founceimitimity of one silicon atom and far
enough from other silicon surface atoms that prendouble oxygen bonding.

Two kinds of core LUCs are investigated, namellgicand parallelepiped cells.
The cubic cells are multiples of diamond structBeavais unit cells, while the
parallelepiped cells are multiples of primitive miand structure unit cells [12]. Cubic
core cells include 8, 64, 216 atoms. Parallelepigedid include 16, 54, and 128 atoms.

[11. Calculations and results

We shall perform the core part calculations usimy I8rge unit cell method
(LUC). The 2D calculations for the oxygenated (0QI1¥31) surface is added to obtain a
complete electronic structure view. The periodiautary condition (PBC) method
available in GUSSIAN 03 program [13] is used tofpen the present tasks.

In Fig. 1 total energy of 216 Si atoms nanocrystale as a function of lattice
constant is plotted. This curve and similar curf@sother LUCs are used to obtain
equilibrium lattice constants for these cells. Aghows the equilibrium lattice constants
obtained from the previous curves plotted againshlver of core atoms. Energy gap,
valence band width and cohesive energy are plattaihst the number of core atoms in
Figs. (3-5) respectively.

Three periodicslab stoichiometries where investigated to examixyggenated (001)-
(1x1) surfacenamely SjsO., SissO16, @NdSii0s6. Thesestoichiometries have surface areas



&, 44, and 9arespectively (a is the lattice constant). Fighéves the surface energy gap
of the oxygenated (001)-(1x1) surface as a functbmsurface area of Si nanocrystal
facet. This figure if followed by a comparison betm core and surface density of states
in Fig. 7. A batman shape curve of ionic chargesxwpgenated (001)-(1x1) surface of
periodicSi;0, stoichiometry $ shown in Fig. 8.
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Fig. 1 Total energy of 216 Si atom nanocrystal core fametion of lattice constant.
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Fig. 2 Lattice constant as a function of number of cdoens for Si nanocrystal.
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Fig. 3 Energy gap of Si nanocrystal core as a functiomuohber of atoms.
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Fig. 4 Valance band width of Si nanocrystals core asatfan of number of atoms.




Number of Atom

0 50 100 150 200 250 300
7.8 1 1 1 1 1

-8.2

8.4

-8.6

-8.8

Cohesive Energy (eV)

-9.2 A e

-9.4

Fig. 5 Cohesive energy for Si nanocrystal core as a fanaf number of atoms.
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Fig. 6 Energy gap of Si nanocrystal oxygenated (001)-(Ixde as a function of surface
area of nanocrystal facet.
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Fig. 8 lonic charges of oxygenated (001)-(1x1) surfaab shlculations as a function of
layer depth.

IV. Discussion and conclusions

Because of symmetry the core part has a uniqudesstgucture. This is the
opposite case of surface multiple structures inclvtarientation, passivating atoms and
other situations in which surface structure changesordingly. Fig. 1 shows the
variation of lattice constant with the number offee@toms. The variation of lattice
constant is all what we need to assign the eqiulibrgeometry for the core part. The
group of equilibrium constants for each of the stigated core sizes is plot against the
number of atoms in Fig. 2. This figure shows thaedattice constant converge to some
value as the nanocrystal grow up in size. This e/ahi 5.28A which is in a good
agreement with the experimental value 5&:51]. Surprisingly, the oxygenated (001)-
(1x1) surface slab calculations of the nanocrystalverges to approximately the same
lattice constant value of the core (5.28. This shows that negligable stresses are
encountered at the interface between surface arel marts which eventually reflects
good adherence of the oxide layer.

Energy gap, valence band width and cohesive enefdiie core part that are
plotted against the number of core atoms in Fig(B€s) respectively, show a converging
behavior as the number of core atoms increases ddmvergence is associated with
fluctuations depending on the geometry of the neysbal core. At the convergence
plateau Bravais cubic lattices seems to have highergy gaps, valence band width, and
cohesive energy (absolute value). This is a cledication of geometry effects on
electronic structure of nanocrystals. Energy gamversely proportional to the surface
area of core atoms. Parallelepiped cells have ¢egs values than cubic ones. This



discrimination between the electronic propertiesaiso applicable to cohesive and
valence band energies. These differences dimisigheananocrystal grows up in size.

Figure 6 shows the energy gap of oxygenated (0D4))(silicon surface. From
comparison of this figure with Fig. 3, we can ntitat energy gap at the surface is much
less than that at core. As a consequence, theyegamis controlled by the surface of
nanocrystals. The descending energy gap shapegobHeads to the result that silicon
nanocrystals at this size obey quantum confinemenglications. Experimentally
Measured energy gap of silicon nanocrystals withean size of 4 nm embedded in a
SiO, matrix is 1.7 eV [15]. Although the size and matis different than the present
calculations, the present surface gap result (M1 €hows good agreement with
experiment. Hydrogenated silicon nanocrystals [1B], show higher band gaps than
oxygenated silicon nanocrystals. Surface modificaby different atoms is discussed in
referencg18]. The oxygen double bonding to the surface seeme taldo favorable in
silicon nanocrystals interface and small nanocty$i®, 20].

Mesoscopic thermal conductance fluctuations o€ilinanowires are measured
in reference [21]. The present fluctuations seembé&o originating from different
geometrical origin, although fluctuations in contdunce should also occur in the present
case due to fluctuations in the energy gap [1]. pitesent results are related to size and
geometry which is far from the size of referenc [200 x 100 nrhcross-section).

Fig. 7 shows a comparison between surface and theifisity of states. Zero
energy is assigned to the highest occupied molecutatal (HOMO). In this figure we
can notice that degeneracy of states is reduceriiace case due to splitting of these
states. As a consequence of this splitting, thedbgap is decreased and valence and
conduction bands are increased.

Fig. 8 shows the surface ionic charges of oxygeh@@1)-(1x1) surface slab as a
function of layer depth. The first and last atomghe figure are for oxygen atoms which
have negative charges due to their high affinitjc@ atoms that are adjacent to oxygen
atoms have positive charges. The second silicoghbers to oxygen atoms have
negative charges while the third neighbors haveitigescharges. This damping
oscillatory charges ends at the fourth neighboth piactically zero charge. This curve is
a good proof for the previously mentioned postutdtthe adequacy of using four layers
to represent the surface.

Empirical or semiempirical methods that neglecgéaemount of the exact ab
initio theory also exist and applied to silicon oarystals [10, 22]. These methods fit
their empirical parameters to the available expental data. These methods can
simulate thousands of atoms at reasonable timesvetdwr, these models can be
considered as a first approximation for the deteation of the anticipated accurate
structures using ab initio methods [13].

Summarizing the upper mentioned conclusions: the part has a converging
fluctuating energy gap, valance band width and siveeenergy. These fluctuations are
related to the geometry of the nanocrystal. Thegngap is controlled by the surface
part of the nanocrystal with the surface having piaign oscillatory successive negative
and positive layer charges. The surface part hasrileymmetry than the core part with
smaller energy gap and wider valence and condubtmals. Surface and core parts have
approximately the same lattice constant that reflédee good adherence of oxide layer at
the surface.



[1] S. M. Sze and K. K. NgPhysics of semiconductor devices, 3¢ edition, Wiley (2007).

[2] S. J. Clark and G. J. Ackland, Phys. Revi@ 10899 (1993).

[3] M. Luppil and S. Ossicini, Phys. Rev.7B, 035340 (2005).

[4] T. van Buuren, L.N. Dinh, L.L. Chase, W.J. Siekis, L.J. Terminello, Phys. Rev.
Lett. 80, 3803 (1998).

[5] P. CarrierPhys. Rev. BB0, 075319 (2009).

[6] Mudar A. Abdulsattar, Khalil H. Al-Bayati, PhyRev. B75, 245201 (2007).

[7] R. Evarestov, M. Petrashen, E. Lodovskaya, P8tatus Solidi 168, 453 (1975).

[8] A. Harker, F. Larkins, J. Phys. 12, 2487 (1979).

[9] A. Harker, F. Larkins, J. Phys. 12, 2497 (1979).

[10] Mudar A. Abdulsattar, Physica4, 1679 (2009).

[11] W. Hehre L. Radom, P. Schileyer, and J. Pofdtenitio Molecular

Orbital Theory _Wiley, New York 1986 _.

[12] C. Kittel, Introduction to Solid State Physics, 5th edition, Wiley, (1976).

[13] Gaussian 03, Revision B.01, M. J. Frisch, G. ™Mlcks, H. B. Schlegel, G. E. Scuseria, M.
A. Robb, J. R. Cheeseman, J. A. Montgomery, JrVréven, K. N. Kudin, J. C. Burant, J. M.
Millam, S. S. lyengar, J. Tomasi, V. Barone, B. Mecci, M. Cossi, G. Scalmani, N. Rega, G.
A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, Bydta, R. Fukuda, J. Hasegawa, M. Ishida, T.
Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, K, J. E. Knox, H. P. Hratchian, J. B.
Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. tEat®@ann, O. Yazyev, A. J. Austin, R.
Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, Morokuma, G. A. Voth, P. Salvador, J. J.
Dannenberg, V. G. Zakrzewski, S. Dapprich, A. Dness, M. C. Strain, O. Farkas, D. K.
Malick, A. D. Rabuck, K. Raghavachari, J. B. ForasmJ. V. Ortiz, Q. Cui, A. G. Baboul, S.
Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, Aiashenko, P. Piskorz, I. Komaromi, R. L.
Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. YPeng, A. Nanayakkara, M. Challacombe, P.
M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gafez, and J. A. Pople, Gaussian, Inc.,
Pittsburgh PA, (2003).

[14] | Vasiliev, J. R. Chelikowsky, and R. M. MartiRhys. Rev. 5, 121302(R) (2002).

[15] L. Ding, T. P. Chen, Y. Liu, C. Y. Ng, and Bung, Phys. Rev. B2, 125419 (2005).
[16] I. Vasiliev, S. Ogiit, and J. R. ChelikowsiBhys. Rev. Lett38, 097401 (2002).

[17] Z. Zhou, R. A. Friesner, and L. Brus, J. Am. Chem. Soc. 125, 15599 (2003).

[18] A. Puzder, A. J. Williamson, J. C. Grossmamj &. Galli,Phys. Rev. Lett38, 097401

(2002).

[19] X. Chen, X. Pi, and D. Yang, J. Phys. Chenil@, 8774 (2010).

[20] R. J. Eyre, J. P. Goss, and P. R. Briddon, Phys. Rev. B 77, 245407 (2008).

[21] J. S. Heron,, T. Fournier, N. Mingo, and O.uBgeois, Nano Letb, 1861 (2009).
[22] C. Bulutay, Phys. Rev. 76, 205321 (2007).



